# [TCML] bipolar coil

DC Cox resonance at wildblue.net
Fri May 2 17:33:17 MDT 2008

```If you calculate resonant match value for 150 mA at 9 kV the result is:

Z = E / I = 9,000 V / .150 Amps =  60,000 Ohms  (you can ignore the DC
resistance of the nsts because it is very low compared to the impedance)

then, let Z = Xc (capacitive reactance)

then,  Z = 1/ 2 x 3.14 x F = 1/377 x C

so, C = 1/377 x Z

In your case, C = 1 / 3.77e2 x 6e4) = 4.42e-8 Farad = .0442 uF = 44.2 nF
This value for perfect match, but you should avoid using this value as it
may form a ferroresonance with your nst.

For parallel pipe or classic sparkgaps, then up to 1.6 x this value.  I
personally always use 1.3 x this value so the cap is recharged faster which
makes the sparks "dance around" on the toroid.

For synchro spark gap, use 2.6 x this resonant match value.

In your case, 2.6 x .0442 uF = .015 uF    If you want the sparks to "dance
around" a bit more atop the toroid, I personally use 2 X res. match value,
so:

2 x .0442, so best value is .0884 uF at 32 kV DC  (16 MMC caps in series on
each string)

16 MMC caps per string gives .009 uF, so in your case, 9.82 strings of 16
0.15 u F, 2 kV MMC caps per string.

You can stretch this a bit, so use 10 parallel strings of .15 uF MMC caps
giving you a final value of .09 uF at 32 kV DC.

This, along with the use of JAVATC, will give you a near perfect fire-up.

Happy sparks,

Dr. Resonance

2008/5/2 Kris Grillo <kristianisawesome at yahoo.com>:

> I'm putting together a small twin coil setup and I'm wondering if anyone
> could look over these numbers for me. The secondaries are 2" pvc (2.375" od)
> with 975 turns of 30 gauge and a 3 x 12 toroid each. The power supply is 2x
> 9KV 60mA and a 9KV 30 mA NSTs in parallel for 9KV 150mA. The gap is a 120
> BPS synchronous rotary gap. The primaries are 6 turns of 1/8" OD copper
> tubing with .25" spacing and inside radius of 2.4375".
>
> Here's where I'm stuck. Javatc is saying that the SRG LTR cap is .1153 uf.
> Again, this figure seems relatively huge. Why does the cap size go up so
> dramatically with the sync gap? The primary is going to be really short with
> a cap that big. I've tried using javatc but I'm not sure how to input the
> coil specs. I tried inputing the two coils as one long coil and putting a
> toroid at either end and a single primary in the middle.I estimated about 4'
> of lead using 1/8" tubing. This gives me a little more than 4 turns on the
> primary so I'm guessing less than 2 turns per primary.
>
> When it comes to the wiring, I have seen schematics that show the
> primaries in parallel and ones that show them in series. Which is best, and
> why?
>
> Does anyone have any advise on this? I'm itching to use this sync gap I
> made. In fact, I started this project when I decided to not use the gap on
> my 6" coil. I've attached the Javatc file for the above described input
> labeled twin specs. I have also included the Javatc file with just one of
> the two sets of sec, pri and topload, for measurement. Those are labeled
> .1166uf.
>
> Thanks,
>
> ~Kris
>
>
>
>
>
>
> ---------------------------------
> Be a better friend, newshound, and know-it-all with Yahoo! Mobile.  Try it
> now.
>
> function loadDemo(form) {
> Clear(form);
> z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
> if(z==1){form.units.selectedIndex=1; cm=true;}
> z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
> GetUnits(form);
> z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
> if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
> z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
> if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
> z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
> if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
> z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
> if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
> z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
> z = 0; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
> z = 0; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
> z = 0; {eval(z); r_height = z; form.r_height.value = r_height;}
> z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
> z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
> z = 2; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
> z = 25; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
> z = 1950; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
> z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
> z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
> z = 4.005; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
> z = 13.5; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
> z = 13.5; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
> z = 4.1805; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
> z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
> z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
> z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
> z = 0.125; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value =
> z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 0; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 27; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
> z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
> z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
> z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
> z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
> z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
> z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
> z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
> z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
> z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
> z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
> z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
> z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
> z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
> z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
> z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
> z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
> if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
> if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
> }
> J A V A T C version 11.7 - CONSOLIDATED OUTPUT
> Friday, May 02, 2008 3:55:33 PM
>
> Units = Inches
> Ambient Temp = 68°F
>
> ----------------------------------------------------
> Surrounding Inputs:
> ----------------------------------------------------
> 0 = Ground Plane Radius
> 0 = Wall Radius
> 0 = Ceiling Height
>
> ----------------------------------------------------
> Secondary Coil Inputs:
> ----------------------------------------------------
> Current Profile = G.PROFILE_LOADED
> 1.187 = Radius 1
> 1.187 = Radius 2
> 2 = Height 1
> 25 = Height 2
> 1950 = Turns
> 30 = Wire Awg
>
> ----------------------------------------------------
> Primary Coil Inputs:
> ----------------------------------------------------
> 2.4375 = Radius 1
> 4.005 = Radius 2
> 13.5 = Height 1
> 13.5 = Height 2
> 4.1805 = Turns
> 0.125 = Wire Diameter
> 0.1166 = Primary Cap (uF)
> 48 = Total Lead Length
> 0.125 = Lead Diameter
>
> ----------------------------------------------------
> Top Load Inputs:
> ----------------------------------------------------
> Toroid #1: minor=3, major=12, height=0, topload
> Toroid #2: minor=3, major=12, height=27, topload
>
> ----------------------------------------------------
> Secondary Outputs:
> ----------------------------------------------------
> 194.78 kHz = Secondary Resonant Frequency
> 90 deg° = Angle of Secondary
> 23 inch = Length of Winding
> 84.8 inch = Turns Per Unit
> 0.00177 inch = Space Between Turns (edge to edge)
> 1211.9 ft = Length of Wire
> 9.69:1 = H/D Aspect Ratio
> 124.0416 Ohms = DC Resistance
> 30506 Ohms = Reactance at Resonance
> 0.37 lbs = Weight of Wire
> 24.926 mH = Les-Effective Series Inductance
> 10440.503 mH = Lee-Equivalent Energy Inductance
> 22.907 mH = Ldc-Low Frequency Inductance
> 26.785 pF = Ces-Effective Shunt Capacitance
> 26.856 pF = Cee-Equivalent Energy Capacitance
> 32.236 pF = Cdc-Low Frequency Capacitance
> 6.79 mils = Skin Depth
> 20.996 pF = Topload Effective Capacitance
> 166.5291 Ohms = Effective AC Resistance
> 183 = Q
>
> ----------------------------------------------------
> Primary Outputs:
> ----------------------------------------------------
> 194.77 kHz = Primary Resonant Frequency
> 0 % = Percent Detuned
> 0 deg° = Angle of Primary
> 7.05 ft = Length of Wire
> 4.68 mOhms = DC Resistance
> 0.25 inch = Average spacing between turns (edge to edge)
> 1.183 inch = Proximity between coils
> 1.1 inch = Recommended minimum proximity between coils
> 4.136 µH = Ldc-Low Frequency Inductance
> 0.11658 µF = Cap size needed with Primary L (reference)
> 1.606 µH = Lead Length Inductance
> 47.875 µH = Lm-Mutual Inductance
> 0.156 k = Coupling Coefficient
> 0.124 k = Recommended Coupling Coefficient
> 6.41  = Number of half cycles for energy transfer at K
> 16.2 µs = Time for total energy transfer (ideal quench time)
>
> ----------------------------------------------------
> Transformer Inputs:
> ----------------------------------------------------
> 120 [volts] = Transformer Rated Input Voltage
> 9000 [volts] = Transformer Rated Output Voltage
> 150 [mA] = Transformer Rated Output Current
> 60 [Hz] = Mains Frequency
> 120 [volts] = Transformer Applied Voltage
> 0 [amps] = Transformer Ballast Current
> 0 [ohms] = Measured Primary Resistance
> 0 [ohms] = Measured Secondary Resistance
>
> ----------------------------------------------------
> Transformer Outputs:
> ----------------------------------------------------
> 1350 [volt*amps] = Rated Transformer VA
> 60000 [ohms] = Transformer Impedence
> 9000 [rms volts] = Effective Output Voltage
> 11.25 [rms amps] = Effective Transformer Primary Current
> 0.15 [rms amps] = Effective Transformer Secondary Current
> 1350 [volt*amps] = Effective Input VA
> 0.0442 [uF] = Resonant Cap Size
> 0.0663 [uF] = Static gap LTR Cap Size
> 0.1153 [uF] = SRSG LTR Cap Size
> 249 [uF] = Power Factor Cap Size
> 12728 [peak volts] = Voltage Across Cap
> 31820 [peak volts] = Recommended Cap Voltage Rating
> 9.44 [joules] = Primary Cap Energy
> 2141 [peak amps] = Primary Instantaneous Current
> 53.1 [inch] = Spark Length (JF equation using Resonance Research Corp.
> factors)
> 36.8 [amps] = Sec Base Current
>
> ----------------------------------------------------
> Rotary Spark Gap Inputs:
> ----------------------------------------------------
> 1 = Number of Stationary Gaps
> 4 = Number of Rotating Electrodes
> 1800 [rpm] = Disc RPM
> 0.25 = Rotating Electrode Diameter
> 0.25 = Stationary Electrode Diameter
> 3 = Rotating Path Diameter
>
> ----------------------------------------------------
> Rotary Spark Gap Outputs:
> ----------------------------------------------------
> 4 = Presentations Per Revolution
> 120 [BPS] = Breaks Per Second
> 16.1 [mph] = Rotational Speed
> 8.33 [ms] = RSG Firing Rate
> 34.98 [ms] = Time for Capacitor to Fully Charge
> 1.19 = Time Constant at Gap Conduction
> 1768.39 [µs] = Electrode Mechanical Dwell Time
> 69.61 [%] = Percent Cp Charged When Gap Fires
> 8860 [peak volts] = Effective Cap Voltage
> 4.58 [joules] = Effective Cap Energy
> 583821 [rms volts] = Terminal Voltage
> 549 [power] = Energy Across Gap
> 56.5 [inch] = RSG Spark Length (using energy equation)
>
> ----------------------------------------------------
> Static Spark Gap Inputs:
> ----------------------------------------------------
> 0 = Number of Electrodes
> 0 [inch] = Electrode Diameter
> 0 [inch] = Total Gap Spacing
>
> ----------------------------------------------------
> Static Spark Gap Outputs:
> ----------------------------------------------------
> 0 [inch] = Gap Spacing Between Each Electrode
> 0 [peak volts] = Charging Voltage
> 0 [peak volts] = Arc Voltage
> 0 [volts] = Voltage Gradient at Electrode
> 0 [volts/inch] = Arc Voltage per unit
> 0 [%] = Percent Cp Charged When Gap Fires
> 0 [ms] = Time To Arc Voltage
> 0 [BPS] = Breaks Per Second
> 0 [joules] = Effective Cap Energy
> 0 [rms volts] = Terminal Voltage
> 0 [power] = Energy Across Gap
> 0 [inch] = Static Gap Spark Length (using energy equation)
> function loadDemo(form) {
> Clear(form);
> z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
> if(z==1){form.units.selectedIndex=1; cm=true;}
> z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
> GetUnits(form);
> z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
> if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
> z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
> if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
> z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
> if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
> z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
> if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
> z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
> z = 36; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
> z = 72; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
> z = 92; {eval(z); r_height = z; form.r_height.value = r_height;}
> z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
> z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
> z = 35.5; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
> z = 47; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
> z = 974.5; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
> z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
> z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
> z = 5.4375; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
> z = 36; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
> z = 36; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
> z = 8; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
> z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
> z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
> z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
> z = 0.25; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value =
> z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 49; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> z = 0; {eval(z); d_inner = z; form.d_inner.value = d_inner;}
> z = 6; {eval(z); d_outer = z; form.d_outer.value = d_outer;}
> z = 49; {eval(z); d_height = z; form.d_height.value = d_height;}
> form.DT.checked = true; form.DG.checked = false;
> z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
> z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
> z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
> z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
> z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
> z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
> z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
> z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
> z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
> z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
> z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
> z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
> z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
> z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
> z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
> z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
> z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
> if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
> if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
> }
> J A V A T C version 11.7 - CONSOLIDATED OUTPUT
> Thursday, May 01, 2008 10:12:21 PM
>
> Units = Inches
> Ambient Temp = 68°F
>
> ----------------------------------------------------
> Surrounding Inputs:
> ----------------------------------------------------
> 36 = Ground Plane Radius
> 72 = Wall Radius
> 92 = Ceiling Height
>
> ----------------------------------------------------
> Secondary Coil Inputs:
> ----------------------------------------------------
> Current Profile = G.PROFILE_LOADED
> 1.187 = Radius 1
> 1.187 = Radius 2
> 35.5 = Height 1
> 47 = Height 2
> 974.5 = Turns
> 30 = Wire Awg
>
> ----------------------------------------------------
> Primary Coil Inputs:
> ----------------------------------------------------
> 2.4375 = Radius 1
> 5.4375 = Radius 2
> 36 = Height 1
> 36 = Height 2
> 8 = Turns
> 0.125 = Wire Diameter
> 0.1166 = Primary Cap (uF)
> 48 = Total Lead Length
> 0.25 = Lead Diameter
>
> ----------------------------------------------------
> Top Load Inputs:
> ----------------------------------------------------
> Toroid #1: minor=3, major=12, height=49, topload
> Disc #1: inside=0, outside=6, height=49, topload
>
> ----------------------------------------------------
> Secondary Outputs:
> ----------------------------------------------------
> 392.18 kHz = Secondary Resonant Frequency
> 90 deg° = Angle of Secondary
> 11.5 inch = Length of Winding
> 84.7 inch = Turns Per Unit
> 0.00178 inch = Space Between Turns (edge to edge)
> 605.7 ft = Length of Wire
> 4.84:1 = H/D Aspect Ratio
> 61.989 Ohms = DC Resistance
> 26258 Ohms = Reactance at Resonance
> 0.18 lbs = Weight of Wire
> 10.656 mH = Les-Effective Series Inductance
> 875.952 mH = Lee-Equivalent Energy Inductance
> 10.758 mH = Ldc-Low Frequency Inductance
> 15.455 pF = Ces-Effective Shunt Capacitance
> 14.91 pF = Cee-Equivalent Energy Capacitance
> 21.389 pF = Cdc-Low Frequency Capacitance
> 4.79 mils = Skin Depth
> 13.069 pF = Topload Effective Capacitance
> 126.2672 Ohms = Effective AC Resistance
> 208 = Q
>
> ----------------------------------------------------
> Primary Outputs:
> ----------------------------------------------------
> 114.65 kHz = Primary Resonant Frequency
> 70.77 % high = Percent Detuned
> 0 deg° = Angle of Primary
> 16.49 ft = Length of Wire
> 10.95 mOhms = DC Resistance
> 0.25 inch = Average spacing between turns (edge to edge)
> 1.183 inch = Proximity between coils
> 1.1 inch = Recommended minimum proximity between coils
> 15.088 µH = Ldc-Low Frequency Inductance
> 0.00997 µF = Cap size needed with Primary L (reference)
> 1.438 µH = Lead Length Inductance
> 51.431 µH = Lm-Mutual Inductance
> 0.128 k = Coupling Coefficient
> 0.124 k = Recommended Coupling Coefficient
> 7.81  = Number of half cycles for energy transfer at K
> 33.72 µs = Time for total energy transfer (ideal quench time)
>
> ----------------------------------------------------
> Transformer Inputs:
> ----------------------------------------------------
> 120 [volts] = Transformer Rated Input Voltage
> 9000 [volts] = Transformer Rated Output Voltage
> 150 [mA] = Transformer Rated Output Current
> 60 [Hz] = Mains Frequency
> 120 [volts] = Transformer Applied Voltage
> 0 [amps] = Transformer Ballast Current
> 0 [ohms] = Measured Primary Resistance
> 0 [ohms] = Measured Secondary Resistance
>
> ----------------------------------------------------
> Transformer Outputs:
> ----------------------------------------------------
> 1350 [volt*amps] = Rated Transformer VA
> 60000 [ohms] = Transformer Impedence
> 9000 [rms volts] = Effective Output Voltage
> 11.25 [rms amps] = Effective Transformer Primary Current
> 0.15 [rms amps] = Effective Transformer Secondary Current
> 1350 [volt*amps] = Effective Input VA
> 0.0442 [uF] = Resonant Cap Size
> 0.0663 [uF] = Static gap LTR Cap Size
> 0.1153 [uF] = SRSG LTR Cap Size
> 249 [uF] = Power Factor Cap Size
> 12728 [peak volts] = Voltage Across Cap
> 31820 [peak volts] = Recommended Cap Voltage Rating
> 9.44 [joules] = Primary Cap Energy
> 1118.9 [peak amps] = Primary Instantaneous Current
> 53.1 [inch] = Spark Length (JF equation using Resonance Research Corp.
> factors)
> 9.1 [amps] = Sec Base Current
>
> ----------------------------------------------------
> Rotary Spark Gap Inputs:
> ----------------------------------------------------
> 1 = Number of Stationary Gaps
> 4 = Number of Rotating Electrodes
> 1800 [rpm] = Disc RPM
> 0.25 = Rotating Electrode Diameter
> 0.25 = Stationary Electrode Diameter
> 3 = Rotating Path Diameter
>
> ----------------------------------------------------
> Rotary Spark Gap Outputs:
> ----------------------------------------------------
> 4 = Presentations Per Revolution
> 120 [BPS] = Breaks Per Second
> 16.1 [mph] = Rotational Speed
> 8.33 [ms] = RSG Firing Rate
> 34.98 [ms] = Time for Capacitor to Fully Charge
> 1.19 = Time Constant at Gap Conduction
> 1768.39 [µs] = Electrode Mechanical Dwell Time
> 69.61 [%] = Percent Cp Charged When Gap Fires
> 8860 [peak volts] = Effective Cap Voltage
> 4.58 [joules] = Effective Cap Energy
> 783540 [rms volts] = Terminal Voltage
> 549 [power] = Energy Across Gap
> 56.5 [inch] = RSG Spark Length (using energy equation)
>
> ----------------------------------------------------
> Static Spark Gap Inputs:
> ----------------------------------------------------
> 0 = Number of Electrodes
> 0 [inch] = Electrode Diameter
> 0 [inch] = Total Gap Spacing
>
> ----------------------------------------------------
> Static Spark Gap Outputs:
> ----------------------------------------------------
> 0 [inch] = Gap Spacing Between Each Electrode
> 0 [peak volts] = Charging Voltage
> 0 [peak volts] = Arc Voltage
> 0 [volts] = Voltage Gradient at Electrode
> 0 [volts/inch] = Arc Voltage per unit
> 0 [%] = Percent Cp Charged When Gap Fires
> 0 [ms] = Time To Arc Voltage
> 0 [BPS] = Breaks Per Second
> 0 [joules] = Effective Cap Energy
> 0 [rms volts] = Terminal Voltage
> 0 [power] = Energy Across Gap
> 0 [inch] = Static Gap Spark Length (using energy equation)
> _______________________________________________
> Tesla mailing list
> Tesla at www.pupman.com
> http://www.pupman.com/mailman/listinfo/tesla
>
>
```