[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[TCML] bipolar coil



I'm putting together a small twin coil setup and I'm wondering if anyone could look over these numbers for me. The secondaries are 2" pvc (2.375" od) with 975 turns of 30 gauge and a 3 x 12 toroid each. The power supply is 2x 9KV 60mA and a 9KV 30 mA NSTs in parallel for 9KV 150mA. The gap is a 120 BPS synchronous rotary gap. The primaries are 6 turns of 1/8" OD copper tubing with .25" spacing and inside radius of 2.4375".

Here's where I'm stuck. Javatc is saying that the SRG LTR cap is .1153 uf. Again, this figure seems relatively huge. Why does the cap size go up so dramatically with the sync gap? The primary is going to be really short with a cap that big. I've tried using javatc but I'm not sure how to input the coil specs. I tried inputing the two coils as one long coil and putting a toroid at either end and a single primary in the middle.I estimated about 4' of lead using 1/8" tubing. This gives me a little more than 4 turns on the primary so I'm guessing less than 2 turns per primary.

When it comes to the wiring, I have seen schematics that show the primaries in parallel and ones that show them in series. Which is best, and why? 

Does anyone have any advise on this? I'm itching to use this sync gap I made. In fact, I started this project when I decided to not use the gap on my 6" coil. I've attached the Javatc file for the above described input labeled twin specs. I have also included the Javatc file with just one of the two sets of sec, pri and topload, for measurement. Those are labeled .1166uf.

Thanks,

~Kris




 
       
---------------------------------
Be a better friend, newshound, and know-it-all with Yahoo! Mobile.  Try it now.
function loadDemo(form) {
Clear(form);
z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
if(z==1){form.units.selectedIndex=1; cm=true;}
z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
if(z==1){form.ambient.selectedIndex=1; centigrade=true;}
GetUnits(form);
z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
z = 0; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
z = 0; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
z = 0; {eval(z); r_height = z; form.r_height.value = r_height;}
z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
z = 2; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
z = 25; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
z = 1950; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
z = 4.005; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
z = 13.5; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
z = 13.5; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
z = 4.1805; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
z = 0.125; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value = Lead_Diameter;}
z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
z = 0; {eval(z); t_height = z; form.t_height.value = t_height;}
form.TT.checked = true; form.TG.checked = false;
add_toroid();
z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
z = 27; {eval(z); t_height = z; form.t_height.value = t_height;}
form.TT.checked = true; form.TG.checked = false;
add_toroid();
z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
}
J A V A T C version 11.7 - CONSOLIDATED OUTPUT
Friday, May 02, 2008 3:55:33 PM

Units = Inches
Ambient Temp = 68°F

----------------------------------------------------
Surrounding Inputs:
----------------------------------------------------
0 = Ground Plane Radius
0 = Wall Radius
0 = Ceiling Height

----------------------------------------------------
Secondary Coil Inputs:
----------------------------------------------------
Current Profile = G.PROFILE_LOADED
1.187 = Radius 1
1.187 = Radius 2
2 = Height 1
25 = Height 2
1950 = Turns
30 = Wire Awg

----------------------------------------------------
Primary Coil Inputs:
----------------------------------------------------
2.4375 = Radius 1
4.005 = Radius 2
13.5 = Height 1
13.5 = Height 2
4.1805 = Turns
0.125 = Wire Diameter
0.1166 = Primary Cap (uF)
48 = Total Lead Length
0.125 = Lead Diameter

----------------------------------------------------
Top Load Inputs:
----------------------------------------------------
Toroid #1: minor=3, major=12, height=0, topload
Toroid #2: minor=3, major=12, height=27, topload

----------------------------------------------------
Secondary Outputs:
----------------------------------------------------
194.78 kHz = Secondary Resonant Frequency
90 deg° = Angle of Secondary
23 inch = Length of Winding
84.8 inch = Turns Per Unit
0.00177 inch = Space Between Turns (edge to edge)
1211.9 ft = Length of Wire
9.69:1 = H/D Aspect Ratio
124.0416 Ohms = DC Resistance
30506 Ohms = Reactance at Resonance
0.37 lbs = Weight of Wire
24.926 mH = Les-Effective Series Inductance
10440.503 mH = Lee-Equivalent Energy Inductance
22.907 mH = Ldc-Low Frequency Inductance
26.785 pF = Ces-Effective Shunt Capacitance
26.856 pF = Cee-Equivalent Energy Capacitance
32.236 pF = Cdc-Low Frequency Capacitance
6.79 mils = Skin Depth
20.996 pF = Topload Effective Capacitance
166.5291 Ohms = Effective AC Resistance
183 = Q

----------------------------------------------------
Primary Outputs:
----------------------------------------------------
194.77 kHz = Primary Resonant Frequency
0 % = Percent Detuned
0 deg° = Angle of Primary
7.05 ft = Length of Wire
4.68 mOhms = DC Resistance
0.25 inch = Average spacing between turns (edge to edge)
1.183 inch = Proximity between coils
1.1 inch = Recommended minimum proximity between coils
4.136 µH = Ldc-Low Frequency Inductance
0.11658 µF = Cap size needed with Primary L (reference)
1.606 µH = Lead Length Inductance
47.875 µH = Lm-Mutual Inductance
0.156 k = Coupling Coefficient
0.124 k = Recommended Coupling Coefficient
6.41  = Number of half cycles for energy transfer at K
16.2 µs = Time for total energy transfer (ideal quench time)

----------------------------------------------------
Transformer Inputs:
----------------------------------------------------
120 [volts] = Transformer Rated Input Voltage
9000 [volts] = Transformer Rated Output Voltage
150 [mA] = Transformer Rated Output Current
60 [Hz] = Mains Frequency
120 [volts] = Transformer Applied Voltage
0 [amps] = Transformer Ballast Current
0 [ohms] = Measured Primary Resistance
0 [ohms] = Measured Secondary Resistance

----------------------------------------------------
Transformer Outputs:
----------------------------------------------------
1350 [volt*amps] = Rated Transformer VA
60000 [ohms] = Transformer Impedence
9000 [rms volts] = Effective Output Voltage
11.25 [rms amps] = Effective Transformer Primary Current
0.15 [rms amps] = Effective Transformer Secondary Current
1350 [volt*amps] = Effective Input VA
0.0442 [uF] = Resonant Cap Size
0.0663 [uF] = Static gap LTR Cap Size
0.1153 [uF] = SRSG LTR Cap Size
249 [uF] = Power Factor Cap Size
12728 [peak volts] = Voltage Across Cap
31820 [peak volts] = Recommended Cap Voltage Rating
9.44 [joules] = Primary Cap Energy
2141 [peak amps] = Primary Instantaneous Current
53.1 [inch] = Spark Length (JF equation using Resonance Research Corp. factors)
36.8 [amps] = Sec Base Current

----------------------------------------------------
Rotary Spark Gap Inputs:
----------------------------------------------------
1 = Number of Stationary Gaps
4 = Number of Rotating Electrodes
1800 [rpm] = Disc RPM
0.25 = Rotating Electrode Diameter
0.25 = Stationary Electrode Diameter
3 = Rotating Path Diameter

----------------------------------------------------
Rotary Spark Gap Outputs:
----------------------------------------------------
4 = Presentations Per Revolution
120 [BPS] = Breaks Per Second
16.1 [mph] = Rotational Speed
8.33 [ms] = RSG Firing Rate
34.98 [ms] = Time for Capacitor to Fully Charge
1.19 = Time Constant at Gap Conduction
1768.39 [µs] = Electrode Mechanical Dwell Time
69.61 [%] = Percent Cp Charged When Gap Fires
8860 [peak volts] = Effective Cap Voltage
4.58 [joules] = Effective Cap Energy
583821 [rms volts] = Terminal Voltage
549 [power] = Energy Across Gap
56.5 [inch] = RSG Spark Length (using energy equation)

----------------------------------------------------
Static Spark Gap Inputs:
----------------------------------------------------
0 = Number of Electrodes
0 [inch] = Electrode Diameter
0 [inch] = Total Gap Spacing

----------------------------------------------------
Static Spark Gap Outputs:
----------------------------------------------------
0 [inch] = Gap Spacing Between Each Electrode
0 [peak volts] = Charging Voltage
0 [peak volts] = Arc Voltage
0 [volts] = Voltage Gradient at Electrode
0 [volts/inch] = Arc Voltage per unit
0 [%] = Percent Cp Charged When Gap Fires
0 [ms] = Time To Arc Voltage
0 [BPS] = Breaks Per Second
0 [joules] = Effective Cap Energy
0 [rms volts] = Terminal Voltage
0 [power] = Energy Across Gap
0 [inch] = Static Gap Spark Length (using energy equation)
function loadDemo(form) {
Clear(form);
z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
if(z==1){form.units.selectedIndex=1; cm=true;}
z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
if(z==1){form.ambient.selectedIndex=1; centigrade=true;}
GetUnits(form);
z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
z = 36; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
z = 72; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
z = 92; {eval(z); r_height = z; form.r_height.value = r_height;}
z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
z = 35.5; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
z = 47; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
z = 974.5; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
z = 5.4375; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
z = 36; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
z = 36; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
z = 8; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
z = 0.25; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value = Lead_Diameter;}
z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
z = 49; {eval(z); t_height = z; form.t_height.value = t_height;}
form.TT.checked = true; form.TG.checked = false;
add_toroid();
z = 0; {eval(z); d_inner = z; form.d_inner.value = d_inner;}
z = 6; {eval(z); d_outer = z; form.d_outer.value = d_outer;}
z = 49; {eval(z); d_height = z; form.d_height.value = d_height;}
form.DT.checked = true; form.DG.checked = false;
add_disc();
z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
}
J A V A T C version 11.7 - CONSOLIDATED OUTPUT
Thursday, May 01, 2008 10:12:21 PM

Units = Inches
Ambient Temp = 68°F

----------------------------------------------------
Surrounding Inputs:
----------------------------------------------------
36 = Ground Plane Radius
72 = Wall Radius
92 = Ceiling Height

----------------------------------------------------
Secondary Coil Inputs:
----------------------------------------------------
Current Profile = G.PROFILE_LOADED
1.187 = Radius 1
1.187 = Radius 2
35.5 = Height 1
47 = Height 2
974.5 = Turns
30 = Wire Awg

----------------------------------------------------
Primary Coil Inputs:
----------------------------------------------------
2.4375 = Radius 1
5.4375 = Radius 2
36 = Height 1
36 = Height 2
8 = Turns
0.125 = Wire Diameter
0.1166 = Primary Cap (uF)
48 = Total Lead Length
0.25 = Lead Diameter

----------------------------------------------------
Top Load Inputs:
----------------------------------------------------
Toroid #1: minor=3, major=12, height=49, topload
Disc #1: inside=0, outside=6, height=49, topload

----------------------------------------------------
Secondary Outputs:
----------------------------------------------------
392.18 kHz = Secondary Resonant Frequency
90 deg° = Angle of Secondary
11.5 inch = Length of Winding
84.7 inch = Turns Per Unit
0.00178 inch = Space Between Turns (edge to edge)
605.7 ft = Length of Wire
4.84:1 = H/D Aspect Ratio
61.989 Ohms = DC Resistance
26258 Ohms = Reactance at Resonance
0.18 lbs = Weight of Wire
10.656 mH = Les-Effective Series Inductance
875.952 mH = Lee-Equivalent Energy Inductance
10.758 mH = Ldc-Low Frequency Inductance
15.455 pF = Ces-Effective Shunt Capacitance
14.91 pF = Cee-Equivalent Energy Capacitance
21.389 pF = Cdc-Low Frequency Capacitance
4.79 mils = Skin Depth
13.069 pF = Topload Effective Capacitance
126.2672 Ohms = Effective AC Resistance
208 = Q

----------------------------------------------------
Primary Outputs:
----------------------------------------------------
114.65 kHz = Primary Resonant Frequency
70.77 % high = Percent Detuned
0 deg° = Angle of Primary
16.49 ft = Length of Wire
10.95 mOhms = DC Resistance
0.25 inch = Average spacing between turns (edge to edge)
1.183 inch = Proximity between coils
1.1 inch = Recommended minimum proximity between coils
15.088 µH = Ldc-Low Frequency Inductance
0.00997 µF = Cap size needed with Primary L (reference)
1.438 µH = Lead Length Inductance
51.431 µH = Lm-Mutual Inductance
0.128 k = Coupling Coefficient
0.124 k = Recommended Coupling Coefficient
7.81  = Number of half cycles for energy transfer at K
33.72 µs = Time for total energy transfer (ideal quench time)

----------------------------------------------------
Transformer Inputs:
----------------------------------------------------
120 [volts] = Transformer Rated Input Voltage
9000 [volts] = Transformer Rated Output Voltage
150 [mA] = Transformer Rated Output Current
60 [Hz] = Mains Frequency
120 [volts] = Transformer Applied Voltage
0 [amps] = Transformer Ballast Current
0 [ohms] = Measured Primary Resistance
0 [ohms] = Measured Secondary Resistance

----------------------------------------------------
Transformer Outputs:
----------------------------------------------------
1350 [volt*amps] = Rated Transformer VA
60000 [ohms] = Transformer Impedence
9000 [rms volts] = Effective Output Voltage
11.25 [rms amps] = Effective Transformer Primary Current
0.15 [rms amps] = Effective Transformer Secondary Current
1350 [volt*amps] = Effective Input VA
0.0442 [uF] = Resonant Cap Size
0.0663 [uF] = Static gap LTR Cap Size
0.1153 [uF] = SRSG LTR Cap Size
249 [uF] = Power Factor Cap Size
12728 [peak volts] = Voltage Across Cap
31820 [peak volts] = Recommended Cap Voltage Rating
9.44 [joules] = Primary Cap Energy
1118.9 [peak amps] = Primary Instantaneous Current
53.1 [inch] = Spark Length (JF equation using Resonance Research Corp. factors)
9.1 [amps] = Sec Base Current

----------------------------------------------------
Rotary Spark Gap Inputs:
----------------------------------------------------
1 = Number of Stationary Gaps
4 = Number of Rotating Electrodes
1800 [rpm] = Disc RPM
0.25 = Rotating Electrode Diameter
0.25 = Stationary Electrode Diameter
3 = Rotating Path Diameter

----------------------------------------------------
Rotary Spark Gap Outputs:
----------------------------------------------------
4 = Presentations Per Revolution
120 [BPS] = Breaks Per Second
16.1 [mph] = Rotational Speed
8.33 [ms] = RSG Firing Rate
34.98 [ms] = Time for Capacitor to Fully Charge
1.19 = Time Constant at Gap Conduction
1768.39 [µs] = Electrode Mechanical Dwell Time
69.61 [%] = Percent Cp Charged When Gap Fires
8860 [peak volts] = Effective Cap Voltage
4.58 [joules] = Effective Cap Energy
783540 [rms volts] = Terminal Voltage
549 [power] = Energy Across Gap
56.5 [inch] = RSG Spark Length (using energy equation)

----------------------------------------------------
Static Spark Gap Inputs:
----------------------------------------------------
0 = Number of Electrodes
0 [inch] = Electrode Diameter
0 [inch] = Total Gap Spacing

----------------------------------------------------
Static Spark Gap Outputs:
----------------------------------------------------
0 [inch] = Gap Spacing Between Each Electrode
0 [peak volts] = Charging Voltage
0 [peak volts] = Arc Voltage
0 [volts] = Voltage Gradient at Electrode
0 [volts/inch] = Arc Voltage per unit
0 [%] = Percent Cp Charged When Gap Fires
0 [ms] = Time To Arc Voltage
0 [BPS] = Breaks Per Second
0 [joules] = Effective Cap Energy
0 [rms volts] = Terminal Voltage
0 [power] = Energy Across Gap
0 [inch] = Static Gap Spark Length (using energy equation)
_______________________________________________
Tesla mailing list
Tesla@xxxxxxxxxxxxxx
http://www.pupman.com/mailman/listinfo/tesla